变形金刚占据了自然语言处理领域,最近影响了计算机视觉区域。在医学图像分析领域中,变压器也已成功应用于全栈临床应用,包括图像合成/重建,注册,分割,检测和诊断。我们的论文旨在促进变压器在医学图像分析领域的认识和应用。具体而言,我们首先概述了内置在变压器和其他基本组件中的注意机制的核心概念。其次,我们回顾了针对医疗图像应用程序量身定制的各种变压器体系结构,并讨论其局限性。在这篇综述中,我们调查了围绕在不同学习范式中使用变压器,提高模型效率及其与其他技术的耦合的关键挑战。我们希望这篇评论可以为读者提供医学图像分析领域的读者的全面图片。
translated by 谷歌翻译
Solving math word problems is the task that analyses the relation of quantities and requires an accurate understanding of contextual natural language information. Recent studies show that current models rely on shallow heuristics to predict solutions and could be easily misled by small textual perturbations. To address this problem, we propose a Textual Enhanced Contrastive Learning framework, which enforces the models to distinguish semantically similar examples while holding different mathematical logic. We adopt a self-supervised manner strategy to enrich examples with subtle textual variance by textual reordering or problem re-construction. We then retrieve the hardest to differentiate samples from both equation and textual perspectives and guide the model to learn their representations. Experimental results show that our method achieves state-of-the-art on both widely used benchmark datasets and also exquisitely designed challenge datasets in English and Chinese. \footnote{Our code and data is available at \url{https://github.com/yiyunya/Textual_CL_MWP}
translated by 谷歌翻译
为了解决数学单词问题,人类学生利用达到不同方程解决方案的各种推理逻辑。但是,自动求解器的主流序列到序列方法旨在解码通过人类注释监督的固定溶液方程。在本文中,我们通过利用一组控制代码来指导模型考虑某些推理逻辑并解码从人类参考转换的相应方程式表达式来指导模型来考虑某些推理逻辑并解码相应的方程式表达式来提出一个受控方程生成求解器。经验结果表明,我们的方法普遍提高了单人(MATH23K)和多项(draw1k,hmwp)基准的性能,在具有挑战性的多重未知数据集上,高达13.2%的准确性。
translated by 谷歌翻译
我们介绍了Gaudi,Gaudi是一种生成模型,能够捕获可以从移动的相机中沉浸式的复杂和现实3D场景的分布。我们通过一种可扩展而强大的方法解决了这个具有挑战性的问题,我们首先优化了散布辐射场和相机姿势的潜在表示。然后,该潜在表示将学习一个生成模型,该模型可以使3D场景的无条件生成和条件生成。我们的模型概括了以前的作品,该作品通过删除可以在样本中共享相机姿势分布的假设来关注单个对象。我们表明,高迪(Gaudi)在多个数据集的无条件生成设置中获得了最先进的性能,并允许有条件地生成3D场景给定的调理变量,例如稀疏图像观测值或描述场景的文本。
translated by 谷歌翻译
最近,我们提供了Wenet,这是一种面向生产的端到端语音识别工具包,它引入了统一的两通道(U2)框架和内置运行时,以解决单个中的流和非流传输模式。模型。为了进一步提高ASR性能并促进各种生产要求,在本文中,我们提出了Wenet 2.0,并提供四个重要的更新。 (1)我们提出了U2 ++,这是一个带有双向注意解码器的统一的两次通行框架,其中包括通过左右注意力解码器的未来上下文信息,以提高共享编码器的代表性和在夺回阶段的表现。 (2)我们将基于N-Gram的语言模型和基于WFST的解码器引入WENET 2.0,从而促进了在生产方案中使用丰富的文本数据。 (3)我们设计了一个统一的上下文偏见框架,该框架利用特定于用户的上下文(例如联系人列表)为生产提供快速适应能力,并提高了使用LM和没有LM场景的ASR准确性。 (4)我们设计了一个统一的IO,以支持大规模数据进行有效的模型培训。总而言之,全新的WENET 2.0可在各种Corpora上的原始WENET上取得高达10 \%的相对识别性能提高,并提供了一些重要的以生产为导向的功能。
translated by 谷歌翻译
场景理解是一个活跃的研究区域。商业深度传感器(如Kinect)在过去几年中启用了几个RGB-D数据集的发布,它在3D场景理解中产生了新的方法。最近,在Apple的iPad和iPhone中推出LIDAR传感器,可以在他们通常使用的设备上访问高质量的RGB-D数据。这在对计算机视觉社区以及应用程序开发人员来说,这是一个全新的时代。现场理解的基本研究与机器学习的进步一起可以影响人们的日常经历。然而,将这些现场改变为现实世界经验的理解方法需要额外的创新和发展。在本文中,我们介绍了Arkitscenes。它不仅是具有现在广泛可用深度传感器的第一个RGB-D数据集,而且是我们最好的知识,它也是了解数据发布的最大的室内场景。除了来自移动设备的原始和处理的数据之外,Arkitscenes还包括使用固定激光扫描仪捕获的高分辨率深度图,以及手动标记为家具的大型分类的3D定向边界盒。我们进一步分析了两个下游任务数据的有用性:3D对象检测和色彩引导深度上采样。我们展示了我们的数据集可以帮助推动现有最先进的方法的边界,并引入了更好代表真实情景的新挑战。
translated by 谷歌翻译
在科学和气象观点来看,具有潜在的健康和安全危害,如火山地区,难以访问或挑战区域的覆盖范围。该地区内容包含的地区通常提供不同重视的有价值信息。我们提出了一种算法,可以用无人驾驶飞行器(UAV)在Hawai`i中最佳地覆盖火山区域。目标区域被分配,具有不均匀的覆盖范围分配。对于UAV的指定电池容量,优化问题会寻求最大化总覆盖范围和累计重要评分的路径,同时惩罚同一区域的重新审视。基于可用的电源和覆盖信息图,轨迹是为无人机而离线生成的。最佳轨迹最小化未注册的电池电量,同时执行UAV返回其起始位置。通过使用顺序二次编程来解决这种多目标优化问题。讨论了竞争优化问题的细节以及分析和仿真结果,以证明所提出的算法的适用性。
translated by 谷歌翻译
在本文中,我们提出了一个名为Wenet的开源,生产第一和生产准备的语音识别工具包,其中实现了一种新的双通方法,以统一流传输和非流媒体端到端(E2E)语音识别单一模型。 WENET的主要动机是缩放研究与E2E演示识别模型的生产之间的差距。 Wenet提供了一种有效的方法,可以在几个真实情景中运送ASR应用程序,这是其他开源E2E语音识别工具包的主要差异和优势。在我们的工具包中,实现了一种新的双通方法。我们的方法提出了一种基于动态的基于块的关注策略,变压器层,允许任意右上下文长度修改在混合CTC /注意架构中。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。我们在使用WENET上的Aishell-1数据集上的实验表明,与标准的非流式变压器相比,我们的模型在非流式ASR中实现了5.03 \%相对字符的误差率(CER)。在模型量化之后,我们的模型执行合理的RTF和延迟。
translated by 谷歌翻译
在本文中,我们提出了一种新的双通方法来统一一个模型中的流和非流媒体端到端(E2E)语音识别。我们的型号采用混合CTC /注意架构,其中编码器中的构装层被修改。我们提出了一种基于动态的块的注意力策略,以允许任意右上下文长度。在推理时间,CTC解码器以流式方式生成n最佳假设。只有更改块大小,可以轻松控制推理延迟。然后,CTC假设被注意力解码器重新筛选以获得最终结果。这种有效的备用过程导致句子级延迟非常小。我们在开放的170小时Aishell-1数据集上的实验表明,所提出的方法可以简单有效地统一流和非流化模型。在Aishell-1测试集上,与标准的非流式变压器相比,我们的统一模型在非流式ASR中实现了5.60%的相对字符错误率(CER)减少。同一模型在流式ASR系统中实现了5.42%的CER,640ms延迟。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译